Compositionally-dependent network-forming tendencies in S-rich As-S glasses

O. SHPOTYUK^{a,b,*}, M. HYLA^a

^aInstitute of Physics, Faculty of Mathematics and Natural Science, Jan Dlugosz University of Czestochowa, 13/15, al. Armii Krajowej, Czestochowa, 42-200,Poland ^bVlokh Institute of Physical Optics 23, Dragomanov str., Lviv, 79005, Ukraine

Structural evolution effects associated with network glass-forming tendencies are examined in As-S system in the concentration range corresponding to S-rich below-stoichiometric compositions. To describe energetically-favorable atomic configurations possible in this archetypal binary As-S system, *ab-initio* quantum chemical modeling routine termed as CINCA (i.e. Cation-Interlinking Network Cluster Approach) with RHF/6-311G basis set is first employed. Performed energy calculations testify in a favor of geometrically-optimized configurations for As_2S_m network clusters (m=3-9) showing stable glass-forming tendency towards "*chain-crossing*" arrangement within Z=2.40-2.22. But with further increase in S content this system apparently deviates from "*chain-crossing*" model. Thus, the glasses with average atomic coordination of Z=2.40 (As_2S_3) and Z=2.29 (As_2S_5) are most stable against devitrification, while, in contrast, the As_2S_8 glasses (Z=2.20) can be distinguished as inserting the instability onset in As-S system due to abrupt tendency towards both local intrinsic chemical decomposition and global phase separation. These results are in good agreement with known experimental evidences on compositional dependencies of physical-chemical properties of binary As-S glasses.

(Received June 1, 2016; accepted February 10, 2017)

Keywords: chalcogenide glasses, glass structure, cluster, ab initio calculation

1. Introduction

Structurally disordered materials based on arsenic sulfides As-S belong to a wide group of chalcogenide vitreous semiconductors (ChVS), i.e. melt-quenched glassy alloys compounding chalcogens (S, Se or Te, but not O) and some elements from IV-V groups of the Periodic table (typically As, Sb, Bi, Ge, etc.) [1-7]. Because of superior optical transmittance in a wide IR spectral region including both atmospheric windows (3-5 μ m and 8-12 μ m) and space telecommunication domain (extended to 20-25 μ m), the property which has been pointed out by R. Frerichs yet in the earliest 1950-s [8], the ChVS serve as an unprecedented basis for novel promising branch in modern optoelectronics, often termed as *Chalcogenide Photonics* [9-12].

The ChVS of binary As-S system are known to form stable glasses in a wide concentration range covering preferentially S-rich compositions from 44-46 to ~16 at. % of As (in respect to average atomic coordination numbers Z from Z=2.44-2.46 to Z=2.16), including stoichiometric arsenic trisulfide As_2S_3 (Z=2.40) as one of the most studied model network glass former [1-5]. In a glassy state, these compounds can be prepared by conventional melt-quenching (or rapid cooling) from either high (more than 800°C) or reduced temperatures (less than 600°C [3,13,14] or even 500°C [15-17]). Their glass-forming networks are built of trigonal AsS_{3/2} pyramids cross-linked by S_n chains so all constituting atoms saturate covalent chemical bonding obeying the Mott's coordination "8-N" rule [4]. In such a way, the structural network of these ChVS is supposed to be well described by so-called

"chain-crossing" model [4,18], where S_n chains are accepted to be more or less homogenously distributed among trigonal AsS_{3/2} pyramids in dependence on a glass composition.

Nevertheless, these simple network-forming rules do not satisfy necessarily the condition of uniform chemical ordering in this As-S system. Indeed, decomposition on nearest chemical compounds as well as phase separation on more stable terminated products (such as arsenic trisulfide As_2S_3 and S_n chains/rings) are possible (at least, in a vicinity of some defined chemical glass compositions) due to local energetic non-identity in configurational entropies/enthalpies for some network-forming structural units. Thus, in isotypical binary As-Se system, such structural instabilities examined through CINCA (cationinterlinking network cluster approach) employing ab-initio quantum chemical cluster modeling with RHF/6-311G^{*} basis set [19,20], demonstrate an obvious oscillating character with most essential deviations near Z=2.25 and Z=2.33 [21]. This conclusion occurred to be in an excellent harmony with known data on compositional anomalies in the physical properties of As-Se ChVS caused by their preparation technologies or prolonged physical aging [22-28]. At the same time, in respect to rich experimental data of Z.U. Borisova [1,2], the binary As-S ChVS also reveal a row of compositional instabilities, which sometimes (under respective glass synthesis conditions) can result in obvious anomalies in many physical properties. Thus, just at the edge of glass-forming region, the AsS_{1.25} glass (Z=2.44) prepared by slow cooling from 800°C (the most explored synthesis regime) represents sub-microdispersive mixture of arsenic monosulfide AsS (As_4S_4) and trisulfide $AsS_{1,5}$ (As_2S_3), which strongly decline optical transmittance of this glass.

Appearance of AsS (Z=2.50) along with highly S-enriched AsS₁₉ compound (Z=2.05) was also detected under phase destabilization in AsS₅ alloy (Z=2.17) [1]. In contrast, the most stable As-S glassy specimens were obtained with As_2S_3 (Z=2.40) As_2S_5 (Z=2.29) and chemical compositions. Stability of the former is expected, since glass possesses energetically favorable twothis dimensional network of covalent chemical bonds forming a so-called layered structure, which block formation of AsS units. Nevertheless, stability of As₂S₅ compound (i.e. AsS_{2.5} with Z=2.29) having a more extended threedimensional covalent network [1] is not too evident. Supposition on quasi-tetrahedral units with double covalent chemical boding S=AsS_{3/2} in this compositional domain (near Z=2.29) has been rejected yet in the 1960-1970s [13,18], when many direct and indirect structural probes clearly demonstrated absence of such structural entities in this As₂S₅ glass, despite successful attempts to stabilize crystalline counterpart of this compound under higher pressures (40-70 kbar) and temperatures (700-1000°C) [1,3].

In this work, we develop further CINCA modeling on binary As-S ChVS to disclose their specificity in respect to computed compositionally-dependent network-forming tendencies.

2. Computational approach to networkforming tendencies in ChVS

The network-forming tendencies in binary As-S ChVS will be examined starting from basic structural unit character for this system, i.e. trigonal AsS_{3/2} pyramid with a base outlined by three S atoms and apex As atom [1-5]. Due to differences in the electronegativities, the constituting S and As atoms forming such pyramid can be respectively accepted like anion and cation in a fullysaturated covalent network of this glass. In respect to "chain crossing" model [4,18], whole network of As-S glass can be built of neighboring AsS_{3/2} pyramids interlinked over Sn chains. In general, such structural network is formed by multiply repeated neighboring atomic clusters interconnected into two ways, these being atom-shared (AS) links with one common S atom (see Fig. 1a) or bond-shared (BS) links with one common S-S bond (see Fig. 1b).

To quantify governing chemical interaction in a system, each two-cation network-forming cluster (outlined by rectangular in Fig. 1) will be structured on *shell* (inner part of the cluster) and *core* (outer part between two neighboring clusters) as it was explained in more details elsewhere [19-21].

Thus, the glass of given chemical composition can be represented by atomic clusters built of shorter $S_{n=0}$ core with longer $S_{n>0}$ shell or longer $S_{n>0}$ core with shorter $S_{n=0}$ shell. The deviation in network-forming tendency from "*chain-crossing*" model is defined by Δl parameter, i.e. difference in the length of cluster *core* and *shell* determined by the number of S half-atoms (so $\Delta l=0$ corresponds to strong "*chain-crossing*" arrangement, when all As atoms are interlinked by equivalent S_n chains). Thus, within this determination, we consider only small atomic clusters with equivalent symmetric inter-cluster legs (*cores*) described by integer Δl values (such simplification allows reliable quantum-chemical calculation for small atomic clusters within CINCA [19]). In general, the fractional Δl values are also possible for asymmetric clusters with non-equivalent inter-cluster legs. But these cases will not be considered in view of essential complications in the calculation procedure.

Fig. 1. Schematic ball-and-stick presentation showing AS links ($\Delta l=1$) between network-forming clusters (outlined by rectangular) in As_2S_4 glass (a) and BS links ($\Delta l=0$) in As_2S_6 glass (b)

For As₂S₄ glass with AS intercluster link on Fig. 1a, the Δl parameter reaches 1, while in case of BS link in As₂S₆ glass (shown in Fig. 1b), the Δl equals 0, thus reflecting an ideal "*chain-crossing*" arrangement.

The above *cluster evolution algorithm* enables formation a set of S-rich As_2S_m atomic clusters, from stoichiometric As_2S_3 (two directly linked corner-shared $AsS_{3/2}$ pyramids in a simplest surrounding of $S_{n=0}$ shell) to pure S (chain- or ring-like S_n fragments) in respect to glass composition defined by average coordination number Z (i.e. number of covalent chemical bonds per atom of glassforming unit).

Two different *intrinsic decomposition processes* will be examined in the studied glassy As-S system, these being *local chemical decomposition* and *global phase separation*.

The first process is decomposition on best energetically-favorable neighboring S-rich (i.e. As_2S_{m+1}) and As-rich (i.e. As_2S_{m-1}) atomic clusters:

$$2 \cdot \mathrm{As}_2 \mathrm{S}_{\mathrm{m}} \leftrightarrow \mathrm{As}_2 \mathrm{S}_{\mathrm{m}+1} + \mathrm{As}_2 \mathrm{S}_{\mathrm{m}-1}. \tag{1}$$

The global phase-separation is attributed to possibility of glassy network to be separated on two corner-shared $AsS_{3/2}$ pyramids (i.e. As_2S_3 atomic cluster) and "pure" S-chain remainder (i.e. S_{m-3} atomic cluster):

$$As_2S_m \leftrightarrow As_2S_3 + S_{m-3} \leftrightarrow As_2S_3 + 2 \cdot (m-3) \cdot S_{1/2}.$$
(2)

By using CINCA modeling [19,20], we will calculate the averaged cluster-forming energies (CFE) to quantify comparison between different atomic clusters. Simplification made within CINCA allows complicated and time-consuming modeling procedure for real glassy networks usually evolved hundreds or even thousands of atoms, replaced by a more simple simulation route for relatively small atomic clusters using available software (like HyperChem Release 7.5 program). The quantumchemical *ab initio* calculations based on restricted Hartree–Fock self-consistent field method using splitvalence double-zeta basis set with single polarization function 6-311G* [29,30] will be performed to determine the CFE. The final geometrical optimization and singlepoint energy calculations will be carried out employing the Fletcher-Reeves conjugate gradient method until rootmean-square gradient of 0.1 kcal/Å·mol is reached.

Formation of molecular-like fragments in accordance to "8-N" rule [4] requires all boundary S atoms in cluster shell to be terminated by hydrogen H atoms (shown by grey-color circles in Fig. 2 and 3). In such a way, the atomic clusters with open covalent chemical bonds will be replaced by clusters of self-closed molecular configurations with fully saturated chemical bonds. Therefore, the calculated total energies of optimized molecular clusters will be corrected on the energies of terminated H atoms and S-H bonds.

Fig. 2. Geometrically-optimized configurations of $A_{52}S_m$ atomic clusters terminated by H atoms: single trigonal $AsS_{3/2}$ pyramid (a); $As_2S_{4/2}$ (b); As_2S_3 , $\Delta l=0$ (c); As_2S_4 , $\Delta l=1(d)$; As_2S_5 , $\Delta l=1(e)$; As_2S_5 , $\Delta l=2$ (f); As_2S_6 , $\Delta l=0$ (g); As_2S_6 , $\Delta l=3$ (h); As_2S_7 , $\Delta l=1(i)$; As_2S_7 , $\Delta l=2$ (j); As_2S_7 , $\Delta l=4$ (k); As_2S_8 , $\Delta l=1$ (l); As_2S_8 , $\Delta l=2$ (m); As_2S_8 , $\Delta l=5$ (n); As_2S_9 , $\Delta l=0$ (o); As_2S_9 , $\Delta l=3$ (q); As_2S_9 , $\Delta l=6$ (r)

After all, the CFE (obtained by subtracting the energy of all atoms within cluster, where only half-part contribution from boundary S atoms are considered) averaged per one atom will be taken as a probabilistic measure for cluster formation. Finally, the *respective* CFE E_f for each chosen atomic cluster will be given in comparison to the energy of single geometrically-optimized AsS_{3/2} trigonal pyramid shown in Fig. 2a (with CFE E_f =-79.404 kcal/mol), serving as a reference point in the comparison of different computed cluster configurations.

Fig. 3. Geometrically-optimized configurations of S_n chains terminated by H atoms: $S_1(a)$, $S_2(b)$, $S_3(c)$, $S_4(d)$, $S_5(e)$, $S_6(f)$

3. Results and discussion

The computed geometrically optimized configurations of As_2S_m atomic clusters ($m=2\div9$) with fully-saturated covalent chemical bonding along with single $AsS_{3/2}$ trigonal pyramid and $As_2S_{4/2}$ cluster built of two such pyramids linked through homonuclear As-As covalent chemical bond are shown in Fig. 2, the corresponding values of chemical bond distances and angles being presented in Table 1 and 2 (the averaged values of these geometrically optimized parameters are Italic-font distinguished)

Table 1. Geometrical parameters of optimized single $AsS_{3/2}$ trigonal pyramid and $As_2S_{4/2}$ (m=2) cluster

Cluster	Bond distance [·10 ⁻⁴ nm] As-S As-As		Bond angle [deg]	
			∠S-As-S	∠S-As-As
AsS _{3/2}	2252	-	101.9	-
	2254		102.9	
	2256		92.7	
average	2254	-	<i>99.2</i>	-
As ₂ S _{4/2}	2252	2464	100.7	103.0
	2256		101.0	95.08
	2253			102.9
	2254			94.9
average	2254	2464	100.9	99.0

In our modeling, the lengths of heteronuclear As-S chemical bonds in all simulated network-forming clusters of As_2S_m chemical compositions are well fitted to 2.244÷2.280 Å domain, thus giving in average 2.261 Å. The lengths of homonuclear S-S covalent chemical bonds occur to be from 2.063 Å to 2.095 Å, thus giving in average 2.076 Å.

The values of bond angle centered on As atom neighboring with two S atoms \angle S-As-S change from 90.7° to 107.5° (so giving 99.2° in average).

Other angles in As_2S_m clusters are based on S atom. Thus, the angles for homonuclear S environment \angle S-S-S are fitted to 104.6÷108.6° range (giving 106.7° in average). The angles of heteronuclear S environment \angle As-S-As are distributed to be in 98.9÷103.0° range (giving 100.6° in average). The angles of mixed S environment \angle S-S-As occur to be in 99.5÷110.1° range with an averaged value reaching 101.9°.

Cluster, ∆l	Bond distan	ice	Bond angle			
	[·10 ⁻⁴ nm]		[deg]			
	As-S	S-S	∠S-As-S	∠S-S-As	∠S-S-S	∠As-S-As
As_2S_3 ,	2249	-	102.6	-	-	98.9
$\Delta l=0$	2252		103.2			
	2264		92.4			
	2264		96.9			
	2252		99.6			
	2253		97.1			00.0
average	2236	-	98.6	-	-	98.9
$As_2S_4,$	2252	2081	97.7	100.4	-	-
$\Delta l=1$	2249		98.8	101.4		
	2269		95.9			
	2248		105.2			
	2240		100.9			
	2275	2001	95.7	100.0		
average	2257	2081	98.7	100.9	-	-
As_2S_5 ,	2267	-	102.8	-	-	103.0
$\Delta l=1$	2261		104.6			
	2265		91.0			
	2253		107.5			
	2200		105.3			
	2239		97.7			
average	2262	-	101.5	-	-	103.0
$As_2S_5,$	2248	2076	103.3	101.5	106.6	-
$\Delta l=2$	2247	2076	101.5	101.3		
	2277		96.0			
	2248		102.0			
	2233		97.3			
average	2270	2076	90.0	101.4	106.6	
As-Sc	2257	2070	102.9	99.6	100.0	-
Al=0	2267	2000	102.9	99.7		_
	2262		93.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	2261		105.9			
	2263		102.5			
	2262		100.1			
average	2263	2086	101.3	99.7	-	-
As2S6.	2245	2072	103.3	101.9	106.7	-
$\Delta l=3$	2277	2073	101.5	101.9	106.7	
	2248	2072	95.6			
	2273		96.1			
	2246		98.1			
	2253		102.1			
average	2257	2072	99.5	101.9	106.7	
As ₂ S ₇ ,	2257	2079	106.9	100.1	107.4	-
$\Delta l=1$	2262	2076	103.1	99.5		
	2264		100.0			
	2256		102.7			
	2264		96.6			
	2266		99.0			
average	2262	2077	101.4	<i>99</i> .8	107.4	-
As_2S_7 ,	2267	2077	101.6	101.0	-	100.1
$\Delta l=2$	2269	2080	98.3	100.7		
	2259	2080	91.6	100.7		
	2259	2077	91.7	100.9		
	2269		98.3			
	2266		101.5			

Table 2. Geometrical parameters of optimized As_2S_m (m=3÷9) *clusters*

Average	2265	2078	97.2	100.8		100.1
A\$2\$7.	2258	2079	101.7	101.2	106.3	-
$\Lambda = 4$	2250	2069	97.2	102.0	107.1	
<u>_</u> ,	2271	2072	96.2		107.5	
	2272	2076	96.1			
	2252		97.7			
	2249		97.6			
average	2259	2074	97.7	101.6	106.9	
As_2S_8 ,	2265	2078	100.0	101.0	-	-
$\Delta l=1$	2269	2078	99.8	101.2		
	2270	2084	90.7	102.2		
	2266	2079	103.0	99.6		
	2262	2079	99.0	100.3		
	2259		97.0	109.4		
average	2265	2080	98.3	102.3	-	_
As ₂ S ₂ ,	2257	2095	102.1	110.1	104.6	
A = 2	2268	2063	101.5	99.7	108.6	
	2267	2078	103.2			
	2257		96.9			
	2269		102.9			
	2263		98.6			
average	2263	2079	100.9	104.9	106.6	_
AsaSa	2249	2077	98.1	109.6	106.1	_
Al=5	2251	2070	993	101.0	106.7	
$\Delta t J$	2266	2070	103.7	101.0	106.7	
	2200	2074	102.2		100.5	
	2245	2073	93.1		107.1	
	2213	2075	98.0			
ανργασρ	2256	2073	99.1	105 3	106.6	
As-S-	2250	2079	95.7	100.3	100.0	
$A_{1=0}^{A_{1}=0}$	2205	2079	95.9	101.5	107.5	
$\Delta t = 0$	2200	2000	96.2	101.5		
	2271	2078	96.4	101.7		
	2262	2070	95.8	101.1		
	2262	2000	95.9	101.0		
average	2266	2079	96.0	101.2	107 3	
As-S-	2200	2075	91.3	101.0	107.5	100.5
$A_{1=3}$	2275	2075	101.6	101.0		100.5
$\Delta i - 3$	2260	2078	97.3	101.9		
	2260	2075	91.3	100.9		
	2268	2075	97.6	100.9		
	2200		101.6			
average	22,5	2076	96.8	101 4		100 5
AspSa	2200	2070	98.8	101.4	106 3	
Al=3	2255	2078	106.5	102.9	105.5	-
$\Delta t J$	2263	2072	100.5	102.9	107.3	
	2203	2074	107.0		107.5	
	2261	2013	97.6			
	2259		97.6			
average	2263	2075	101 3	101 0	106 5	-
AsaSa	2205	2073	93.5	108.8	105.9	-
A = 6	2274	2075	103.0	100.0	105.9	-
$\Delta u = 0$	2244	2071 2072	103.0	100.9	106.5	
	2200	2072	104.0		107.1	
	2273	2071	0/ 0		107.1	
	2232	2071	94.0 07 /		107.1	
average	2254	2072	08 8	104.0	106.6	
arciuze	2250	20/2	20.0	107.9	100.0	-

The above values of calculated covalent chemical bond lengths and angles for different As_2S_m atomic clusters correlate well with known experimental data on structural parameterization in S-rich glasses of binary As-S system as well as their crystalline counterparts.

Thus, the structure of crystalline As₂S₃ known as mineral orpiment [4] was refined from X-ray diffraction patterns by Morimoto [31], and Mullen and Nowacki [32]. These authors showed that orpiment was composed of layers, the As-S spiral intralayer chains being bridged through S atom between As atoms creating interlinked corner-sharing AsS_{3/2} pyramids. The values of bond angles \angle S-As-S and \angle As-S-As determined by Morimoto [31] are in 92.7÷106.5° and 94.4÷102.8° range, respectively, the average values of bond angles based on As and S atom are respectively 98.7° and 99.3°, and As-S bond lengths are in 2.21÷2.28 Å range (i.e. 2.24 Å in average). According to Mullen and Nowacki [32], the values of covalent chemical bond angles \angle S-As-S and \angle As-S-As are respectively ranged from 92.8° to 105.0° and from 87.9° to 103.7° , the average values of bond angles based on As and S atom are 99° and 97.5°, and As-S bond lengths are ranged from 2.243 Å to 2.308 Å (giving 2.283 Å in average).

The experimental data on structural parameters of binary As-S glasses have been also reported (see, for example, [33-36]). The value of heteronuclear As-S bond length obtained from high-resolution time-of-flight neutron-diffraction experiments carried out on stoichiometric As₂S₃ glass is 2.27 Å [33]. The pulsed neutron diffraction study performed on this As₂S₃ glass gave the As-S bond length as 2.29 Å [34]. Lead better and Apling [35] using X-ray and neutron diffraction experimental techniques on some compositions of vitreous As-S close to As₂S₃ found that distribution of As-S bond lengths is centered about 2.24 Å. Yang et al. [36] examined structural changes associated with chemical composition using X-ray-absorption spectroscopy and found that As-S bond length is ~2.27 Å for S-rich As-S glasses.

Good coincidence in the computed values of covalent chemical bond lengths and angles in our model for twocation As_2S_m atomic clusters with realistic experimental bond lengths and angles determined for glassy As-S specimens justifies a reasonable ground for further conclusions.

The calculated values of respective CFE E_f for As₂S_m atomic clusters ($m=3\div9$) are given in Table 3.

To validate eq. (1) for these network-forming clusters at m=3 (Z=2.40), we parameterize the As₂S_{4/2} atomic cluster corresponding to m=2 (see Fig. 2b), the results being listed in Table 1. This As₂S_{4/2} cluster built on direct covalent bridging between two neighboring AsS_{3/2} pyramids (see Fig. 2a) through homonuclear As-As bond possesses the CFE $E_{f}=-77.683$ kcal/mol, so it is less favored than single trigonal AsS_{3/2} pyramid possessing $E_{f}=-79.404$ kcal/mol.

There is only one geometrical configuration for As_2S_m cluster with m=3 satisfying the condition of ideal "*chain-crossing*" arrangement with $\Delta l=0$ under accepted cluster-evolution algorithm.

Thus, in fact, we deal with two corner-sharing $AsS_{3/2}$ pyramids forming stoichiometric As_2S_3 glass with Z=2.40 (Fig. 2c). This cluster possesses CFE E_{f} =-79.408 kcal/mol (which corresponds to respective energy 0.004 kcal/mol, i.e. CFE recalculated in respect to forming energy of single AsS_{3/2} trigonal pyramid). Other linking between AsS_{3/2} pyramids through two common S atoms (edgesharing) or three S atoms (face-sharing) are unlikely in view of unfavorable CFE [37,38]. Two corner-sharing AsS_{3/2} pyramids (e.g. glass-forming As₂S₃ cluster) are transformed by additional S atom in As₂S₄ cluster with m=4 and Z=2.33 (see Fig. 2d), which is also alone on this level of compositional row. This atomic cluster with respective CFE reduced to E_{f} =-1.06 kcal/mol has inner shell, which is two S half-atoms longer than inter-cluster *core* ($\Delta l=1$), thus resulting only in slight deviation from "chain-crossing" model.

Two types of network-forming clusters of the same As_2S_5 composition (*m*=5) but of different topological configurations can be formed in binary As-S system at Z=2.29 (Fig. 2e, 2f). The first of them posseessing short core and long shell (thus giving $\Delta l=1$) has an obvious preference, the respective CFE being $E_{f}=-0.76$ kcal/mol, which is the best CFE among all character for S-rich As_2S_m atomic clusters (*m*>3).

With further increase in S content, the modeled As_2S_m clusters keep stable tendency towards "*chain-crossing*".

Thus, among two different configurations of As_2S_6 clusters (*m*=6, Z=2.25) shown in Fig. 2g and 2h, the first one with Δl =0 has preference (*E_t*=-1.43 kcal/mol).

This tendency is still proper for next step including three types of As₂S₇ atomic clusters (m=7, Z=2.22) shown in Fig. 2i, 2j and 2k, the cluster with smallest core-shell lengths deviation ($\Delta l=1$, Fig. 2i) having best CFE reaching $E_f=-1.84$ kcal/mol.

Three topological configurations of As₂S₈ atomic clusters (*m*=8, Z=2.20) are presented on Fig. 21, 2m, 2n. But at this level of structural evolution, the "*chaincrossing*" trend does not dominate, since cluster with Δl =2 (Fig. 2m) has an obvious preference over two others with Δl =1 (Fig. 2l) and Δl =5 (Fig. 2n).

In final, we turn to As₂S₉ atomic clusters (m=9, Z=2.18) allowing four topological configurations under accepted evolution algorithm: one for $\Delta l=0$ (see Fig. 2o), two for $\Delta l=3$ having either short (see Fig. 2p) or long (see Fig. 2q) inter-cluster core, and one for $\Delta l=6$ (see Fig. 2r). From Table 3, it follows that the best respective CFE (i.e. $E_f=-2.30$ kcal/mol) is obtained for atomic cluster with $\Delta l=3$ comprising short core and long shell (shown in Fig. 2p).

Thus, concluding on the above computed CFE values (gathered in Table 3), we can claim that stable glass-forming tendency towards "*chain-crossing*" structural arrangement in binary As-S system is well kept within Z=2.40-2.22 compositional domain, but with further increase in the S content this system apparently deviates from "*chain-crossing*" model.

The numerous data on glass-forming ability in ChVS of As-S system are in good agreement with these findings. Indeed, as it follows from comprehensive and systematic

research performed yet in the 1960-1970s [1-4], the As-S glasses containing 21-30 at. % of As were most stable against crystallization, while those enriched on S occurred to be quickly affected by spontaneous crystallization even at relatively low room temperature. It was also shown that

As-S ChVS built of trigonal $AsS_{3/2}$ pyramidal structural units linked via S_n chain-like or ring-like formations became unstable with lower average atomic coordination at Z<2.20 [13,14,18, 39,40].

Table 3. Computed values of respective CFE for geometrically-optimized As_2S_m clusters (the preferential energies are bold-distinguished)

A a S alwatan 7	<i>E_f</i> [kcal/mol]							
As_2S_m cluster, L	Δ <i>l</i> =0	∆ <i>l</i> =1	∆ <i>l</i> =2	∆ <i>l</i> =3	∆ <i>l</i> =4	∆ <i>l</i> =5	∆ <i>l</i> =6	
$As_2S_3, Z=2.40$	0.004							
$As_2S_4, Z=2.33$		-1.06						
As ₂ S ₅ , Z=2.29		-0.76	-1.75					
As ₂ S ₆ , Z=2.25	-1.43			-2.25				
As ₂ S ₇ , Z=2.22		-1.84	-3.39		-2.64			
$As_2S_8, Z=2.20$		-3.68	-2.46			-3.14		
As ₂ S ₉ , Z=2.18	-3.57			-2.30 -2.72			-3.34	

Table 4 Parameterization of cluster-decomposition reactions (1) and (2) for binary As-S glasses

Initia chara	al cluster acteristics				Final cluster characteristics		
As ₂ S _m	Z	ΔΙ	<i>ΔE(1)</i> in eq. (1), [kcal/mol]	S _{1/2} number in eq. (2), 2⋅(m-3)	E _f for S _{m-3} [kcal/mol]	CFE for As ₂ S ₃ + S _{m-3} [kcal/mol]	ΔE(2) in eq. (2), [kcal/mol]
As_2S_3	2.40	0	-1.330	0	-	-79.408	0
As_2S_4	2.33	1	0.620	2	-65.720	-77.127	-1.22
As_2S_5	2.29	1	-0.508	4	-65.676	-75.485	-3.16
As ₂ S ₆	2.25	0	0.056	6	-65.639	-74.245	-3.73
As_2S_7	2.22	1	-0.156	8	-73.251	-76.672	-0.89
As ₂ S ₈	2.20	2	0.363	10	-73.148	-76.278	-0.67
As ₂ S ₉	2.18	3	-	12	-73.415	-76.139	-0.97

Similar glass-stability region identified due to diminishing non-reversing heat flow in temperaturemodulated calorimetric measurements (22.5-29 at. % of As) [23,41], was ascribed to the reversibility window in this system, e.g. the glass compositions, which are optimally constrained (rigid, but stress-free) being inserted between under-constrained floppy and over-constrained stress-rigid phases [42].

Despite this criterion is not satisfied to determine unambiguously the boundaries of optimally constrained phases for compositionally-variable glassy systems (mainly, due to artefacts of experimental measuring technique, employing only one-frequency heat-flow signal to teste different glassy samples at significantly different distance from glass transition temperature) [43-45], these data testify on close similarity with against-crystallization compositional range in As-S system [1-4].

Let's examine intrinsic decomposition processes in As-S glasses described by reaction (1) to verify which types of As_2S_m atomic clusters with characteristic respective CFE listed in Table 3 are most stable in their network-forming ability, the result of such examination being gathered in Table 4.

We can see that decomposition of As₂S₃ networkforming clusters represented themselves as geometricallyoptimized configurations of two corner-shared AsS_{3/2} trigonal pyramids (Fig. 2c) is unlikely due to high negative energetic barrier $\Delta E(1)$ for decomposition reaction (1) reaching -1.33 kcal/mol. These atomic clusters are surely dominated among near-stoichiometric glass compositions in binary As-S system. The same concerns As₂S₅ clusters (Z=2.29) with $\Delta E(1)$ =-0.508 kcal/mol, as well as As₂S₇ clusters (Z=2.22) with lower but still negative barrier $\Delta E(1)$ close to -0.156 kcal/mol. Oppositely, the decomposition in respect to reaction (1) becomes favorable for As-S glasses near Z=2.33, 2.25 and 2.20, where structural response in glass-forming ability is respectively defined by preferential behavior of As₂S₄, As_2S_6 and As_2S_8 clusters. Noteworthy, the strong positive decomposition barrier of $\Delta E(1)=0.620$ kcal/mol for As₂S₄ clusters is well distinguished as contrast to $\Delta E(1)$ =-1.330 kcal/mol for neighboring As₂S₃ clusters (Z=2.40).

Intrinsic *local chemical decomposition* of As_2S_m atomic clusters on the best energetically-favorable As_2S_{m+1} and As_2S_{m-1} clusters in respect to reaction (1) can be experimentally revealed, provided it will be accompanied by essential *global phase-separation* [46] due to reaction (2). This reaction is to estimate most expected phaseseparation products composed of corner-shared AsS_{3/2} pyramids (e.g. As₂S₃ clusters shown in Fig. 2c) and S_{m-3} chain remainders among the same set of As₂S_m clusters.

Let's examine these decomposition variants.

Preliminary, we computed S_{m-3} chains in dependence on their length defined by number of S half-atoms [47]. The geometrically-optimized configurations of such atomic clusters are shown in Fig. 3, their parameters including CFE E_f being presented in Table 4.

Then, the energetic barrier $\Delta E(2)$ of reaction (2) was calculated for geometrically optimized As_2S_m clusters from Table 3 with boundary counterparts of these phases (such as As_2S_3 and S_{m-3} clusters). In general, the $\Delta E(2) < 0$ is indicative of stable As_2S_m clusters (blocked global phase separation), while $\Delta E(2)$ approaching 0 and tending towards positive side testifies on possible phase separation in a system.

As it follows from Table 4, the energetic barriers $\Delta E(2)$ of phase-separation reaction (2) are gradually negative in binary As-S system within 2.25<Z<2.40 (for As_2S_m atomic clusters with m=3-6), strong maximum $\Delta E(2)$ =-3.73 kcal/mol being character for As₂S₆ glass (Z=2.25). This glass seems to be most stable against devitrification due to competitive input of different glassforming structural blocks [1,2]. In these ChVS, only anomalies caused by oscillation character of local chemical decomposition due to reaction (1) are possible, i.e. intrinsic decomposition near As_2S_4 (Z=2.33) and As_2S_6 (Z=2.25). With transition to As_2S_7 composition (Z=2.22), the $\Delta E(2)$ barrier shows abrupt change to -0.89 kcal/mol (so jump in the barrier height reaches 2.8 kcal/mol), this effect being quite stable in all further S-rich glasses with slight deviations around -(0.8-0.9) kcal/mol (see Table 4). Such behavior can be attributed to global phase separation due to reaction (2), despite positive $\Delta E(2)$ values are not achieved in this compositional row, which can be presumably caused by difference in the procedure of chalcogen chains termination for As₂S_m and S_{m-3} clusters. The As_2S_7 glass (Z=2.22) does not correspond to full coincidence in the glass-forming tendencies due to (1) and (2) reactions, since unfavorable barrier for local chemical decomposition $\Delta E(1)$ is accompanied by favorable one for global phase separation $\Delta E(2)$, as it follows from Table 4. This is proper for ChVS of next S-rich composition As₂S₈ (Z=2.20), where both trends coincide by energetic directionality, inserting the instability onset in binary As-S system due to approaching region of intrinsically decomposed and phase separated glasses.

Noteworthy, in other archetypal binary As-Se system, which can be accepted as electronic counterpart for current As-S system [1-5], this instability onset is more shifted towards stoichiometry (As₂Se₆, Z=2.25), thus defining some technological fluctuations in the densities of these ChVS [21]. At the same time, the inhibited phase-separation tendencies in As-Se glasses can be obviously associated with more depressed energetic barriers of global phase-separation in this system. Thus, the character jump in the $\Delta E(2)$ barrier heights of the global phase-separation reaction (2) reaches only ~0.6 kcal/mol [21], so

being essentially lower than in the binary As-S system where this jump overcomes ~ 3 kcal/mol (as estimated from the corresponding barrier heights for As₂Se₆ and As₂Se₈ glasses given in Table 4). This conclusion on global phase-separation in As-S glass-forming system for highly S-rich chemical compositions (Z<2.22) is in an excellent respect to great amount of experimental evidences [1-4,13,40,41].

4. Conclusions

The compositionally-dependent network-forming tendencies in ChVS of archetypal As-S system are examined within 2.18<Z<2.40 domain using ab-initio quantum chemical modeling routine termed as CINCA (cation-interlinking network cluster approach). Different possible configurations of As_2S_m clusters (m=3-9) are considered. On the basis of computed energies for more than 20 clusters, we conclude that stable glass-forming tendency towards "chain-crossing" arrangement is well kept within Z=2.40-2.22 range, but with further increase in S content this glassy system apparently deviates from "chain-crossing" model. The As-S glasses with mean coordination of Z=2.40 (corresponding to stoichiometric As₂S₃) and Z=2.29 (corresponding to As₂S₅ glass) are expected to be most stable in this binary As-S system. Some instabilities are character for glasses with Z=2.33, 2.25 and 2.20 because of their preference to intrinsic local chemical decomposition on As- and S-rich structural fragments. The As-S glasses within 2.25<Z<2.40 domain are quite stable against separation on As₂S₃ and "pure" S_n phases, while those expending in S-rich side beyond this composition (Z<2.22) are most sensitive to global phase separation. The As₂S₈ glass (Z=2.20) is distinguished as introducing instability onset in As-S system due to abrupt tendency towards both local intrinsic chemical decomposition and global phase separation.

References

- Z. U. Borisova, Chemistry of glassy semiconductors (in Rus.), Ed. Leningrad. Univ. Leningrad (1972).
- [2] Z. U. Borisova, Glassy semiconductors, Plenum Press, New York-London (1981).
- [3] G. Z. Vinogradova, Glass formation and phase equilibria in chalcogenide systems. Binary and ternary systems (in Rus.), Nauka, Moscow, (1984).
- [4] A. Feltz, Amorphous Inorganic Materials and Glasses, VCH Verlagsgesellschaft, Weinheim / VCH Publishers, New York (1993).
- [5] M. Popescu, Non-crystalline chalcogenides, Kluwer Academic Publ., Dordrecht-Boston-London (2000).

- [6] Semiconducting Chalcogenide Glass 1: Glass Formation, Structure, and Simulated Transformations in Chalcogenide Glassess. – Semiconductors and Semimetals, vol. 78, R. Fairman, B. Ushkov (Eds.). Elsevier Academic Press, Amsterdam-Boston-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo (2004).
- [7] Chalcogenide glasses: Preparation, properties and applications. Woodhead Publishing Series in Electronics and Optical Materials, J.-L. Adam, X. Zhang (Eds.) Philadelphia-New Delhi (2013).
- [8] R. Frerichs, J. Opt. Soc. Am. 43, 1153 (1953).
- [9] X. Zhang, B. Bureau, C. Boussard-Pledel, J. Lucas, P. Lucas, Chem. Europ. J. 14, 432 (2008).
- [10] K. Richardson, D. Krol, K. Hirao, Intern. J. Appl. Glass Sci. 1, 74 (2010).
- [11] B. J. Eggleton, B. Luther-Davies, K. Richardson, Nature Photonics 5, 141 (2011).
- [12] J.-L. Adam, L. Calvez, J. Troles, V. Nazabal, Intern. J. Appl. Glass Sci. 6, 287 (2015).
- [13] S. Tsuchihashi, Y. Kawamoto, J. Non-Cryst. Sol. 5, 286 (1971).
- [14] S. Maruno, M. Noda, J. Non-Cryst. Sol. 7, 1 (1972).
- [15] J. S. McCloy, B. J. Riley, S. K. Sundaram, H. A. Qiao, J. V. Crum, B. R. Johnson, J. Non-Cryst. Sol. **356**, 1288 (2010).
- [16] R. Golovchak, O. Shpotyuk, J. S. McCloy,
 B. J. Roley, C. F. Windisch, S. K. Sundaram,
 A. Kovalskiy, H. Jain, Phil. Mag. 90, 4489 (2010).
- [17] S. K. Sundaram, J. S. McCloy, B. J. Riley, M. K. Murphy, H. A. Qiao, C. F. Windisch, E. D. Walter, J. V. Crum, R. Golovchak, O. Shpotyuk, J. Am. Ceram. Soc. 95, 1048 (2011).
- [18] M. B. Myers, E. J. Felty, Mat. Res. Bull. 2, 535 (1967).
- [19] O. Shpotyuk, M. Hyla, V. Boyko, J. Optoelectron. Adv. M. 15, 1429 (2013).
- [20] O. Shpotyuk, V. Boyko, M. Hyla, Phys. Status Solidi C 6, 1882 (2009).
- [21] O. Shpotyuk, M. Hyla, V. Boyko, Comp. Mater. Sci. 110, 144 (2015).
- [22] D. G. Georgiev, P. Boolchand, M. Micoulaut, Phys. Rev. B 62, 9228 (2000).
- [23] P. Boolchand, P. Chen, U. Vempati, J. Non-Cryst. Sol. 355, 1773 (2009).
- [24] P. Chen, P. Boolchand, D.G. Georgiev, J. Phys.: Condens. Matter 22, 065104 (2010).
- [25] O. Shpotyuk, M. Hyla, V. Boyko, R. Golovchak, Physica B 403, 3830 (2008).

- [26] R. Golovchak, O. Shpotyuk, A. Kozdras,B. Bureau, M. Vlcek, A. Ganjoo, H. Jain,Phil. Mag. 67, 4323 (2007).
- [27] R. Golovchak, H. Jain, O. Shpotyuk, A. Kozdras, A. Saiter, J.-M. Saiter, Phys. Rev. B, 78, 014202 (2008).
- [28] O. Shpotyuk, R. Golovchak, A. Kozdras, Physical aging of chalcogenide glasses, in: J.-L. Adam and X. Zhang (Eds.), Chalcogenide glasses: Preparation, properties and applications, Woodhead Publ. Ser. in Electronics and Optical Materials, Philadelphia-New Delhi (2013).
- [29] W. J. Hehre, R. F. Stewart J. A. Pople, J. Chem. Phys. 51, 2657 (1969).
- [30] A. D. McLean, G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).
- [31] I. Morimoto, Miner. J. 1, 160 (1954).
- [32] D. J. E. Mullen, W. Nowacki, Z. Kristallogr. 136, 48 (1972).
- [33] J. H. Lee, A. C. Hannon, S. R. Elliott, arXiv preprint cond-mat/0402587 (2004).
- [34] Y. Iwadate, T. Hattori, S. Nishivama,
 K. Fukushima, Y. Mochizuki, M. Misawa,
 T. Fukunaga, J. Phys. Chem. Solids,
 60, 1447 (1999).
- [35] A. J. Leadbetter, A. J. Apling, J. Non-Cryst. Sol. 15, 250 (1974).
- [36] C. Y. Yang, M. A. Paesler, D. E. Sayers, Phys. Rev. B, **39**, 10342 (1989).
- [37] M. Hyla, V. Boyko, O. Shpotyuk, J. Filipecki, Visnyk Lviv. Univ. Ser. Physics, 43, 118 (2009).
- [38] O. Shpotyuk, V. Boyko, Ya. Shpotyuk, M. Hyla, Visnyk Lviv. Univ. Ser. Physics, 43, 226 (2009).
- [39] A. Bertoluzza, C. Fagnano, P. Monti,
 G. Semerano, J. Non-Cryst. Sol. 29, 49 (1978).
- [40] L. Busse, Phys. Rev. B, **29**, 3639 (1984).
- [41] P. Chen, Ch. Holbrook, P. Boolchand, D. G. Georgiev, K. A. Jackson, M. Micoulaut, Phys. Rev. B, 78, 224208 (2008).
- [42] M. F. Thorpe, D. J. Jacobs, M. V. Chubynsky, J. C. Phillips, J. Non-Cryst. Sol. 266-269, 859 (2001).
- [43] P. Lucas, E. A. King, O. Gulbiten, J. L. Yarger, E. Soignard, B. Bureau, Phys. Rev. B 80, 2141140 (2009).
- [44] H. Y. Zhao, Y. P. Koh, M. Pyda, S. Sen,S. L. Simon, J. Non-Cryst. Sol. 2013, 368, 63.
- [45] O. Shpotyuk, A. Kozdras, R. Golovchak, M. Iovu, Phys. Stat. Solidi C, 8(11-12), 3043 (2011).
- [46] M. B. Myers, J. S. Berkes, J. Non-Cryst. Sol. 8-10, 804 (1972).
- [47] V. Boyko, M. Hyla, O. Shpotyuk, Visnyk Lviv. Univ. Ser. Physics, 43, 233 (2009).

^{*}Corresponding author: olehshpotyuk@yahoo.com